4.9t^2+9t-350=0

Simple and best practice solution for 4.9t^2+9t-350=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4.9t^2+9t-350=0 equation:



4.9t^2+9t-350=0
a = 4.9; b = 9; c = -350;
Δ = b2-4ac
Δ = 92-4·4.9·(-350)
Δ = 6941
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6941}=\sqrt{1*6941}=\sqrt{1}*\sqrt{6941}=1\sqrt{6941}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-1\sqrt{6941}}{2*4.9}=\frac{-9-1\sqrt{6941}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+1\sqrt{6941}}{2*4.9}=\frac{-9+1\sqrt{6941}}{9.8} $

See similar equations:

| -4x+2=-9-13 | | 0=-16t^2-32t+32 | | 0=-16t^2-31t+31 | | 21-2(4+y)+2=90 | | -2(y-4)+3y=6 | | 13-3(12+x)+3=122 | | 6-3x=-3(x+2) | | -8(1-x)=-4x-20 | | 0=-16t^2-40t+40 | | -5c+5(6-c)=-110 | | -2+30=4x | | 4a=25 | | -6(-2b+8)=-33-3b | | -3+11=-8x+51 | | 0=-16t^2-30t+30 | | 12+3(2x-5)=2+ | | 2(4x-1)=-8x-1 | | -3(2+8)=-3x-27 | | 0=(x-3)2-4x | | 0=-16t^2-30+30 | | 5(r)=2r^2-4 | | y=-8(1) | | -30-3x=-3(x+8) | | x-2(x-2)=-37 | | -2x-26=2 | | 5(3z*3z-2z+4)=0 | | 11x+77=18x+19 | | 16g=72 | | 1/8(14a+62)=25 | | -8s-8=-9s+2 | | 1/2+3/4=x5-2.5x | | 5-1d=-9 |

Equations solver categories